Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Cell Rep ; 43(3): 113902, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38431840

Adeno-associated virus (AAV) is a member of the genus Dependoparvovirus, which infects a wide range of vertebrate species. Here, we observe that, unlike most primate AAV isolates, avian AAV is transcriptionally silenced in human cells. By swapping the VP1 N terminus from primate AAVs (e.g., AAV8) onto non-mammalian isolates (e.g., avian AAV), we identify a minimal component of the AAV capsid that controls viral transcription and unlocks robust transduction in both human cells and mouse tissue. This effect is accompanied by increased AAV genome chromatin accessibility and altered histone methylation. Proximity ligation analysis reveals that host factors are selectively recruited by the VP1 N terminus of AAV8 but not avian AAV. Notably, these include AAV essential factors implicated in the nuclear factor κB pathway, chromatin condensation, and histone methylation. We postulate that the AAV capsid has evolved mechanisms to recruit host factors to its genome, allowing transcriptional activation in a species-specific manner.


Capsid , Dependovirus , Humans , Animals , Mice , Capsid/metabolism , Dependovirus/metabolism , Histones/metabolism , Viral Transcription , Genetic Vectors , Capsid Proteins/genetics , Capsid Proteins/metabolism , Primates , Host Specificity , Chromatin/metabolism
2.
Nat Commun ; 15(1): 1955, 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38438373

Clinical translation of AAV-mediated gene therapy requires preclinical development across different experimental models, often confounded by variable transduction efficiency. Here, we describe a human liver chimeric transgene-free Il2rg-/-/Rag2-/-/Fah-/-/Aavr-/- (TIRFA) mouse model overcoming this translational roadblock, by combining liver humanization with AAV receptor (AAVR) ablation, rendering murine cells impermissive to AAV transduction. Using human liver chimeric TIRFA mice, we demonstrate increased transduction of clinically used AAV serotypes in primary human hepatocytes compared to humanized mice with wild-type AAVR. Further, we demonstrate AAV transduction in human teratoma-derived primary cells and liver cancer tissue, displaying the versatility of the humanized TIRFA mouse. From a mechanistic perspective, our results support the notion that AAVR functions as both an entry receptor and an intracellular receptor essential for transduction. The TIRFA mouse should allow prediction of AAV gene transfer efficiency and the study of AAV vector biology in a preclinical human setting.


Dependovirus , Liver , Humans , Animals , Mice , Dependovirus/genetics , Disease Models, Animal , Genetic Therapy , Hepatocytes
3.
Methods Mol Biol ; 2765: 227-246, 2024.
Article En | MEDLINE | ID: mdl-38381343

Circular RNAs (circRNAs) have recently emerged as a promising modality for gene and RNA-based therapies. They are more stable than their linear counterpart and can be designed for efficient expression in different cell and tissue types. In this chapter, we developed different backsplicing circRNA cassettes that can enable efficient gene expression in various cell and tissue types. Furthermore, we packaged cassettes encoding circRNAs into adeno-associated viral (AAV) vectors that can be delivered via intracerebroventricular (ICV) injections to achieve expression in murine brain tissue. We provide detailed methods for the design of backsplicing circRNAs, circRNA detection, and generation of AAV-circRNA vectors for CNS dosing and expression in mice.

4.
J Thorac Cardiovasc Surg ; 167(5): e131-e139, 2024 May.
Article En | MEDLINE | ID: mdl-37678606

OBJECTIVE: Ex vivo lung perfusion has emerged as a platform for organ preservation, evaluation, and restoration. Gene delivery using a clinically relevant adeno-associated vector during ex vivo lung perfusion may be useful in optimizing donor allografts while the graft is maintained physiologically active. We evaluated the feasibility of adeno-associated vector-mediated gene delivery during ex vivo lung perfusion in a rat transplant model. Additionally, we assessed off-target effects and explored different routes of delivery. METHODS: Rat heart-lung blocks were procured and underwent 1-hour ex vivo lung perfusion. Before ex vivo lung perfusion, 4e11 viral genome luciferase encoding adeno-associated vector 9 was administered via the left bronchus (Br group, n = 4), via the left pulmonary artery (PA group, n = 3), or directly into the circuit (Circuit group, n = 3). Donor lungs in the Control group (n = 3) underwent ex vivo lung perfusion without adeno-associated vector 9. Only the left lung was transplanted. Animals underwent bioluminescence imaging weekly before being killed at 2 weeks. Tissues were collected for luciferase activity measurement. RESULTS: All recipients tolerated the transplant well. At 2 weeks post-transplant, luciferase activity in the transplanted lung was significantly higher among animals in the Br group compared with the other 3 groups (Br: 1.1 × 106 RLU/g, PA: 8.3 × 104 RLU/g, Circuit: 3.8 × 103 RLU/g, Control: 2.5 × 103 RLU/g, P = .0003). No off-target transgene expression was observed. CONCLUSIONS: In this work, we demonstrate that a clinically relevant adeno-associated vector 9 vector mediates gene transduction during ex vivo lung perfusion in rat lung grafts when administered via the airway and potentially the pulmonary artery. Our preliminary results suggest a higher transduction efficiency when adeno-associated vector 9 was delivered via the airway, and delivery during ex vivo lung perfusion reduces off-target effects after graft implant.


Lung Transplantation , Rodentia , Rats , Animals , Perfusion/methods , Lung , Lung Transplantation/methods , Luciferases/genetics , Luciferases/metabolism , Luciferases/pharmacology
5.
Nat Protoc ; 18(11): 3413-3459, 2023 Nov.
Article En | MEDLINE | ID: mdl-37735235

Over the past 5 years, our laboratory has systematically developed a structure-guided library approach to evolve new adeno-associated virus (AAV) capsids with altered tissue tropism, higher transduction efficiency and the ability to evade pre-existing humoral immunity. Here, we provide a detailed protocol describing two distinct evolution strategies using structurally divergent AAV serotypes as templates, exemplified by improving CNS gene transfer efficiency in vivo. We outline four major components of our strategy: (i) structure-guided design of AAV capsid libraries, (ii) AAV library production, (iii) library cycling in single versus multiple animal models, followed by (iv) evaluation of lead AAV vector candidates in vivo. The protocol spans ~95 d, excluding gene expression analysis in vivo, and can vary depending on user experience, resources and experimental design. A distinguishing attribute of the current protocol is the focus on providing biomedical researchers with 3D structural information to guide evolution of precise 'hotspots' on AAV capsids. Furthermore, the protocol outlines two distinct methods for AAV library evolution consisting of adenovirus-enabled infectious cycling in a single species and noninfectious cycling in a cross-species manner. Notably, our workflow can be seamlessly merged with other RNA transcript-based library strategies and tailored for tissue-specific capsid selection. Overall, the procedures outlined herein can be adapted to expand the AAV vector toolkit for genetic manipulation of animal models and development of human gene therapies.


Capsid , Dependovirus , Animals , Humans , Capsid/chemistry , Dependovirus/genetics , Genetic Therapy/methods , Gene Transfer Techniques , Capsid Proteins/genetics , Genetic Vectors , Transduction, Genetic
6.
Nat Commun ; 14(1): 4857, 2023 08 11.
Article En | MEDLINE | ID: mdl-37567873

Unlike adult mammals, zebrafish regenerate spinal cord tissue and recover locomotor ability after a paralyzing injury. Here, we find that ependymal cells in zebrafish spinal cords produce the neurogenic factor Hb-egfa upon transection injury. Animals with hb-egfa mutations display defective swim capacity, axon crossing, and tissue bridging after spinal cord transection, associated with disrupted indicators of neuron production. Local recombinant human HB-EGF delivery alters ependymal cell cycling and tissue bridging, enhancing functional regeneration. Epigenetic profiling reveals a tissue regeneration enhancer element (TREE) linked to hb-egfa that directs gene expression in spinal cord injuries. Systemically delivered recombinant AAVs containing this zebrafish TREE target gene expression to crush injuries of neonatal, but not adult, murine spinal cords. Moreover, enhancer-based HB-EGF delivery by AAV administration improves axon densities after crush injury in neonatal cords. Our results identify Hb-egf as a neurogenic factor necessary for innate spinal cord regeneration and suggest strategies to improve spinal cord repair in mammals.


Spinal Cord Injuries , Spinal Cord Regeneration , Animals , Humans , Mice , Axons/metabolism , Heparin-binding EGF-like Growth Factor/genetics , Heparin-binding EGF-like Growth Factor/metabolism , Mammals , Nerve Regeneration/genetics , Spinal Cord/metabolism , Spinal Cord Injuries/genetics , Spinal Cord Injuries/therapy , Spinal Cord Injuries/metabolism , Spinal Cord Regeneration/physiology , Zebrafish/genetics
7.
Sci Transl Med ; 15(692): eadf4086, 2023 04 19.
Article En | MEDLINE | ID: mdl-37075130

Glutaric aciduria type I (GA-1) is an inborn error of metabolism with a severe neurological phenotype caused by the deficiency of glutaryl-coenzyme A dehydrogenase (GCDH), the last enzyme of lysine catabolism. Current literature suggests that toxic catabolites in the brain are produced locally and do not cross the blood-brain barrier. In a series of experiments using knockout mice of the lysine catabolic pathway and liver cell transplantation, we uncovered that toxic GA-1 catabolites in the brain originated from the liver. Moreover, the characteristic brain and lethal phenotype of the GA-1 mouse model was rescued by two different liver-directed gene therapy approaches: Using an adeno-associated virus, we replaced the defective Gcdh gene or we prevented flux through the lysine degradation pathway by CRISPR deletion of the aminoadipate-semialdehyde synthase (Aass) gene. Our findings question the current pathophysiological understanding of GA-1 and reveal a targeted therapy for this devastating disorder.


Glutaryl-CoA Dehydrogenase , Lysine , Animals , Mice , Glutaryl-CoA Dehydrogenase/genetics , Glutaryl-CoA Dehydrogenase/metabolism , Lysine/metabolism , Mice, Knockout , Liver/metabolism
8.
Nat Commun ; 13(1): 5947, 2022 10 10.
Article En | MEDLINE | ID: mdl-36210364

Recombinant adeno-associated viral (AAV) vectors are a promising gene delivery platform, but ongoing clinical trials continue to highlight a relatively narrow therapeutic window. Effective clinical translation is confounded, at least in part, by differences in AAV biology across animal species. Here, we tackle this challenge by sequentially evolving AAV capsid libraries in mice, pigs and macaques. We discover a highly potent, cross-species compatible variant (AAV.cc47) that shows improved attributes benchmarked against AAV serotype 9 as evidenced by robust reporter and therapeutic gene expression, Cre recombination and CRISPR genome editing in normal and diseased mouse models. Enhanced transduction efficiency of AAV.cc47 vectors is further corroborated in macaques and pigs, providing a strong rationale for potential clinical translation into human gene therapies. We envision that ccAAV vectors may not only improve predictive modeling in preclinical studies, but also clinical translatability by broadening the therapeutic window of AAV based gene therapies.


Dependovirus , Gene Editing , Animals , Dependovirus/metabolism , Genetic Therapy , Genetic Vectors/genetics , Humans , Macaca/genetics , Mice , Swine , Transduction, Genetic
9.
Hum Gene Ther ; 31(15-16): 839-851, 2020 08.
Article En | MEDLINE | ID: mdl-32527155

Friedreich's ataxia (FRDA) is the most common inherited form of ataxia in humans. It is caused by severe downregulation of frataxin (FXN) expression instigated by hyperexpansion of the GAA repeats located in intron 1 of the FXN gene. Despite numerous studies focused on identifying compounds capable of stimulating FXN expression, current knowledge regarding cis-regulatory elements involved in FXN gene expression is lacking. Using a combination of episomal and genome-integrated constructs, we defined a minimal endogenous promoter sequence required to efficiently drive FXN expression in human cells. We generated 19 constructs varying in length of the DNA sequences upstream and downstream of the ATG start codon. Using transient transfection, we evaluated the capability of these constructs to drive FXN expression. These analyses allowed us to identify a region of the gene indispensable for FXN expression. Subsequently, selected constructs containing the FXN expression control regions of varying lengths were site specifically integrated into the genome of HEK293T and human-induced pluripotent stem cells (iPSCs). FXN expression was detected in iPSCs and persisted after differentiation to neuronal and cardiac cells, indicating lineage independent function of defined regulatory DNA sequences. Finally, based on these results, we generated AAV encoding miniFXN genes and demonstrated in vivo FXN expression in mice. Results of these studies identified FXN sequences necessary to express FXN in human and mouse cells and provided rationale for potential use of endogenous FXN sequence in gene therapy strategies for FRDA.


Dependovirus/genetics , Friedreich Ataxia/genetics , Induced Pluripotent Stem Cells/cytology , Iron-Binding Proteins/genetics , Plasmids/administration & dosage , Regulatory Elements, Transcriptional , Animals , Cell Differentiation , Friedreich Ataxia/metabolism , Gene Expression Regulation , Genetic Therapy , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Neurons/cytology , Neurons/metabolism , Promoter Regions, Genetic , Frataxin
10.
Article En | MEDLINE | ID: mdl-28965927

Artificial light produces an emission spectrum that is considerably different than the solar spectrum. Artificial light has been shown to affect various behavior and physiological processes in vertebrates. However, there exists a paucity of data regarding the molecular genetic effects of artificial light exposure. Previous studies showed that one of the commonly used fluorescent light source (FL; 4100K or "cool white") can affect signaling pathways related to maintenance of circadian rhythm, cell cycle progression, chromosome segregation, and DNA repair/recombination in the skin of male Xiphophorus maculatus. These observations raise questions concerning the kinetics of the FL induced gene expression response, and which biological functions become modulated at various times after light exposure. To address these questions, we exposed zebrafish to 4100K FL and utilized RNA-Seq to assess gene expression changes in skin at various times (1 to 12h) after FL exposure. We found 4100K FL incites a robust early (1-2h) transcriptional response, followed by a more protracted late response (i.e., 4-12h). The early transcriptional response involves genes associated with cell migration/infiltration and cell proliferation as part of an overall increase in immune function and inflammation. The protracted late transcriptional response occurs within gene sets predicted to maintain and perpetuate the inflammatory response, as well as suppression of lipid, xenobiotic, and melatonin metabolism.


Fish Proteins/genetics , Light , Skin/radiation effects , Zebrafish , Animals , Fish Proteins/metabolism , Fluorescence , Gene Expression Profiling/methods , Gene Expression Regulation/radiation effects , Kinetics , Real-Time Polymerase Chain Reaction , Skin/immunology , Skin/metabolism , Transcription, Genetic/drug effects , Transcriptome , Zebrafish/genetics , Zebrafish/immunology , Zebrafish/metabolism
...